DE | Deutsch

Künstliche Intelligenz? Machine Learning? Deep Learning?

 

Bei Künstlicher Intelligenz handelt es sich allgemein um den Versuch, intelligentes Verhalten nachzubilden oder zu simulieren. Machine Learning und Deep Learning bilden dabei Unterbereiche.

 

Programme, die Machine Learning nutzen, können mithilfe von Algorithmen das Handeln von Menschen berechnen, um z. B. Kreditkartenbetrug aufzudecken. Deep Learning geht dabei einen Schritt weiter und nutzt hierarchische Schichten, um den Prozess des maschinellen Lernens durchzuführen. Das bedeutet: Es werden künstliche neuronale Netze aufgebaut, die dem des menschlichen Gehirns ähneln. Komplizierte Konzepte können erlernt werden, indem sie aus einfacheren Schichten (Hidden Layers) zusammengesetzt werden. Diese Schichten verarbeiten Daten und geben sie an die nächste Schicht weiter, die wiederum die Informationen bearbeitet und sie an die nächste Schicht weitergibt usw. Dieses Schichtenmodell kann endlos fortgesetzt werden und geht in die Tiefe. Deshalb auch die Bezeichnung „Deep Learning“.


Die Deep-Learning-Technologie wird beispielsweise in fahrerlosen Autos eingesetzt, wenn es darum geht, Verkehrsschilder, Autos und Menschen voneinander zu unterscheiden. Deep Learning findet sich aber auch in Computern und Smartphones in Form von intelligenter Sprachsteuerung. Die Einsatzmöglichkeiten sind praktisch unendlich und im Vergleich zu maschinellem Lernen weitaus präziser. Einziger Nachteil: Deep Learning benötigt viel Rechenleistung.
 

 

Welche Ebenen der künstlichen Intelligenz gibt es?

Derzeit werden drei bis fünf unterschiedliche Abstufungen der künstlichen Intelligenz genannt. Auf der ersten Ebene nimmt KI keinen Einfluss, d.h. der Mensch steuert noch alles. Anschließend unterteilt man nach Grad der Eigenständigkeit, wie viel Einfluss die KI nehmen kann und wie „selbstständig“ sie operiert. Das beginnt mit den Aufgaben eines Assistenten und kann hin bis zur selbstdenkenden und -handelnden Maschine gehen. Derzeit ist KI in vielen Bereichen noch auf den untersten Ebenen angesiedelt. Viele „Maschinen“ sind noch nicht in der Lage, unabhängig zu agieren. Das kann sich aber in den nächsten Jahren schnell ändern. Selbstfahrende Autos sind dabei erst der Anfang.

 

 

Herausforderung: Performance.

Künstliche Intelligenz erfordert deutlich höhere Rechenleistung als alle anderen derzeit bekannten Applikationen. Vor allem benötigen Deep-Learning-Algorithmen viel Performance, um Informationen Stück für Stück analysieren und auszuwerten zu können. Ohne Beschleunigung mittels Grafikprozessoren (Graphics Processing Unit/GPU) ist das nicht zu erreichen. Zu den leistungsstärksten GPUs auf dem Markt zählen derzeit die NVIDIA® Tesla®-Grafikprozessoren. Hiermit können Unternehmen ihre anspruchsvollen Anwendungen für High Performance Computing (HPC) und Hyperscale Workloads im Rechenzentrum beschleunigen. Hiermit können Unternehmen ihre anspruchsvollsten High-Performance Computing (HPC)- und Hyperscale-Workloads im Rechenzentrum beschleunigen. Der Vorteil: Datenmengen im Petabyte-Bereich werden wesentlich schneller bewältigt als mit herkömmlichen CPUs. Ob Deep Learning, Energieforschung, virtuelle Desktops oder selbstfahrende Autos – die Tesla-Grafikprozessoren liefern enorme Leistung, um umfangreiche Berechnungen und Simulationen in kürzester Zeit zu ermöglichen.

Sie haben Fragen zur Künstlichen Intelligenz?

Schreiben Sie uns einfach eine E-Mail an info@bechtle.com oder rufen Sie uns an: Telefon +49 7132 981-1600. Wir helfen Ihnen gerne weiter.

 

E-Mail schreiben

NVIDIA – BESTE PERFORMANCE FÜR KI.

Künstliche Intelligenz benötigt starke Rechenleistung. Das kompakte System NVIDIA bietet die Lösung.

IBM WATSON: DIE INNOVATIVE KI-PLATTFORM FÜR UNTERNEHMEN.

Mit IBM Watson lassen sich alle möglichen Formen von Daten interpretieren.

MICROSOFT AZURE AI UND GRAPH AI – KI-TOOLS FÜR ENTWICKLER.

Nutzen Sie die vielfältigen Tools, um die KI-Plattform zu entwickeln, die Ihr Unternehmen benötigt.